Bra korrelation Breslemetoden - laboratoriemätningar

Ett projekt som genomfördes vid SP hade som mål att göra bilden lite klarare när det gäller hur mätning av klorider på ytor ska gå till och hur resultaten ska bedömas. Resultaten gav en del värdefull information om vad man ska tänka på vid provtagning, t.ex. att glas inte är en representativ provyta och därmed bör undvikas. Sot på ytan säger inget om kloridhalten där. Vidare visade fältmätning enligt Breslemetoden god överensstämmelse med laboratoriemätningar. En del nyttig information kom också fram i projektet kring gällande gränsvärde för när man ska sanera.

En komplicerad verklighet


Olika provtörs

I projektet undersökt avsättningen (deponeringen) av vattenlösliga ämnen på olika material som normalt finns i byggnader: t.ex. stål, glas, plast, väggfärst, rostfritt. Provmaterialen samt referensuppor av olika metaller utsätts för brandröken ifrån en PVC-matta under två olika brandscenarier. För prova tagning användes den vanligt förekommande Breslemetoden (ISO 8502-6), som är en fältmetod. Provlösningen, extraktet, analyserades därefter fältmässigt med konduktivitet, men också på laboratorium med monokromatograf, för att ta reda på mer i detalj vad som finns på ytorna.

Sot innebär inte klorid

Resultaten visar att typen av yta är väsentlig avgörande för hur mycket klorider som deponeras på ytan. Exempelvis var en glasyta helt ren från klorider, trots att den var rejuft satig. Detta påverkar att kloriderna eller egentliga saltsyra transporterar med bildad vattenånga och inte med sotpartiklar. En slutsats är därmed att en restvädersledare inte ska ha hänvis till att en yta är satig eller inte då hon/han gör sin kloridmätning.

Något som också framkom var att klorider är det enda jonslag som avsätts på ytor vid den här typen av bränder (PVC-matta), vilket i praktiken innebär att konduktivitetsmätning kan användas för att mäta kloridhalten.

Breslemetoden duger bra

Det visade sig att fältmätning med Breslemetoden (ISO 8502-9) överensstämde förvånansvärt bra med kemisk analys på laboratorium med monokromatograf för samtliga försök.

Nuvarande gränsvärde inte för lägt

Zink som exponerades för brandröken uppvisade 100 gånger större metallförlust än metall som ej exponerats för röken. Med tanke på detta ska gränsvärket för när man ska börja sanera, absolut understiga ca 15 μg NaCl/cm² och sannolikt ska vårdet vara betydligt lägre. Det gränsvärde som i praktiken används idag på 10 μg NaCl/cm² är nog lämplig för de flesta miljöer men vårdena bör eventuellt vara ännu lägre för känsliga platser, 5 μg NaCl/cm² kan vara lämpligare för dessa miljöer. För exempelvis elektronik skulle detta behöva utredas mer.

Rapport


Kontaktperson

Vill du veta mer, kontakta Magnus Palm, SP Telefon: 033-165342 E-post: magnus.palm@sp.se

2003-06-26

Rapporter som sammanfattas av BRANDFORSK kan
• köpas av rapportens utgivare, som framgår ovan som kontaktperson
• Rapport och Informationsblad finns på www.brandforsk.nu